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The contribution of the molecular flexibility to the solvation excess free energy is expressed
in terms of probabilities of reaching hard limits on intramolecular coordinates in a series of
calculations successively relaxing those limits. Numerical tests on the harmonic oscillator are
also presented and used to make suggestion about computational issues.
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1. Introduction

The calculation of the solvation free energy difference between different mole-
cules or different conformational states of a molecule in general requires a series of
simulations over a path in the configuration space connecting these two molecules or
conformations [1–3]. Such calculations have to deal with a large number of degrees of
freedom, typically of the order of 104–105.

These degrees of freedom can be separated into two classes: intermolecular
and intramolecular. For a solute in a continuum solvent model the flexibility is the
only source of nontrivial contribution to the free energy, thus any procedure that ad-
dresses the free energy of flexibility already addresses the solvation free energy as
well. For systems with explicit solvent models, on the other hand, the flexibility
provides only a relatively small (but by no means insignificant) contribution to the
free energy as the contribution of solute-solvent terms generally dominate in such
cases.

While it is possible, and indeed it is customary, to perform the calculation of solva-
tion free energies with explicit models including simultaneously the intermolecular and
intramolecular degrees of freedom (i.e., including the molecular flexibility in all the in-
termediate states required by the calculation), it is clear that the inclusion of flexibility to
all the intermediate states requires significant additional effort that can be saved if there
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is a way to efficiently calculate the contribution of flexibility at the endpoints only and
deal with rigid solutes in-between.

To belabor this point, note that for a large solute in a simple solvent like water, the
sampling of the intermolecular degrees of freedom is significantly easier (although by
no means easy) due to the interchangeability of the solvent molecules. Sampling of the
intramolecular degrees of freedom may appear to be easy as long as the molecule retains
a conformation near a local minimum. However, there is no way of tellinga priori how
many other local minima are there that are to be sampled. Thus modeling a flexible
system not only faces the problem of having to sample potentially a great number of
local minima, but it is relatively easy to obtain a result that appear ‘converged’ when
it is actually quite far from it. In addition, it has been argued as well as demonstrated
that a particular path, called polynomial path, that creates and annihilates rigid solutes
simultaneously in a particular manner lends itself very efficiently to thermodynamic in-
tegration [4] – typically using only five quadrature points (independent of the size of
the molecules in question) [5–8]. It follows that the development of an efficient proce-
dure for the calculation of the free energy of flexibility is of great interest and potential
use.

The definition of the free energy of flexibility requires some care, though. It is
not simply the free energy difference between frozen and flexible states of the molecule
since that difference is infinite – a consequence of the fact that when the underlying ideal
gas system is undergoing the freezing process, the entropy change corresponding to the
degrees of freedom just frozen iskT ln(V1/V0), and the volume of the frozen degrees of
freedoms is zero. However, theexcessfree energy of the freezing process is finite and
so aredifferencesbetween the free energies of freezing around different conformations.

The purpose of this paper is to present a new method that calculates the excess sol-
vation free energy difference between rigid and flexible molecules. This method called
thescaled constraint method.Once fully developed, combined with the methods based
on rigid solutes as referred to above, it is expected to provide a significantly improved
procedure (both in terms of efficiency and reliability) for the determination of solvation
free energy differences of large solutes, both for system using continuum solvent and
explicit solvent.

2. The scaled constraint method

The calculation of the free energy due to flexibility requires a path connecting
the rigid and flexible states. Formally this is done by the introduction of the coupling
parameterλ that – through its change from 0 to 1 – transforms the system from its initial
to its final state. There are two obvious approaches to the problem. The first approach
introducesλ by dividing with it all potential parameters that represent the strength of the
intramolecular constraints. Thus atλ = 1 one obtains the flexible system while atλ = 0
the strengths of all constraints are scaled up to infinity, effectively yielding a system
that can not leave its equilibrium conformation (at finite temperatures). The second
approach considers the limits on all internal coordinates that define the allowed region



M. Mezei / Calculation of the free energy due to molecular flexibility 237

of the conformation space for the particular conformation in question and introducesλ

as a multiplier of these limits – hence the name ‘scaled constraint method’. This means
that atλ = 0 all intramolecular degrees of freedom are limited to a single value while at
λ = 1 the flexible system is recovered.

The present study proposes the use of the second approach. It has a conceptual and
a technical advantage over the first one: it allows a convenient way to define the allowed
region around a conformation and it also provides a way to eliminate the singularity
referred to in the introduction. Since the source of the singularity is the underlying ideal
gas, it appears plausible that it would be eliminated if one applies the coupling parameter
to calculate the excess free energy of flexibility (i.e., the difference between the system
under consideration and the underlying ideal gas) and it will be shown below that this is
indeed the case.

2.1. The scaled constraint method in one dimension

Let us consider a system with a single internal degree of freedomx limited to a
finite interval [0, X] with x = 0 being the rigid state ande(x) is the intramolecular
Hamiltonian,e(0) = 0. First, we will develop the a thermodynamic integration (TI)
formalism for the free energy difference1A between the rigid and non-rigid systems.
The coupling parameter is introduced as a scaling factor to the limitX of the interval
wherex is allowed to move:

A(λ) = −kT ln
∫ λX

0
exp

[−e(x)/kT ]dx. (1)

Writing 1A as the integral of its derivative with respect toλ (the standard starting point
of the TI methods) and carrying out the requisite derivations (noting that the derivative
of an integral with respect to its limit is just the integrand) we obtain

1A=
∫ 1

0

∂

∂λ

{
−kT ln

∫ λX

0
exp

[−e(x)/kT ]dx}dλ

=−kT
∫ 1

0

(∂/∂λ)
∫ λX

0 exp[−e(x)/kT ]dx∫ λX
0 exp[−e(x)/kT ]dx dλ

=−kT
∫ 1

0

X exp[−e(λX)/kT ]∫ λX
0 exp[−e(x)/kT ]dx dλ = −kT

∫ 1

0
X
〈
δ(x − λX)〉

λ
dλ. (2)

The last expression of equation (2) is justX times the Boltzmann factor atλX for a
system where the variablex is limited to the range[0, λX]. It can be estimated from a
simulation that generates a Boltzmann-distributed ensemble as the probabilityP(λX) of
x = λX:

P(λX) = lim
1x→0

P(x ∈ [λX −1x, λX])
1x

. (3)
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A quick analysis, however, shows that the resulting TI integral is divergent (as it should
be, since it includes the divergent ideal gas contribution): asλ goes to zero, the interval
gets smaller and smaller thus the Boltzmann factor will approach a constant which is
just 1/λX, a divergent integrand.

The advantage of this path lies in the fact that it can be extended in such a way that
the inclusion of the change in the underlying ideal gas free energy results in a finite and
computationally manageable integrand, as will be shown next.

Consider the TI integrand for the difference between two1A’s:

1A01(λ) = kTX
{

exp[−e1(λX)/kT ]∫ λX
0 exp[−e1(x)/kT ]dx

− exp[−e0(λX)/kT ]∫ λX
0 exp[−e0(x)/kT ]dx

}
. (4)

We will show that in the limit ofλ → 0,1A01(λ) is finite. Consider the leading terms
of e0 ande1:

e0(x) = c0x
p and e1(x) = c1x

q (5)

and assumeq > p > 1. Expanding the exponentials and bringing the two fractions to a
common denominator we obtain

1A01(λ)= kT
[(

1− c1X
qλq

kT
+ · · ·

)(
λX − c0X

pλp+1

kT (p + 1)
+ · · ·

)
−
(

1− c0X
pλp

kT
+ · · ·

)(
λX − c1X

qλq+1

kT (q + 1)
+ · · ·

)]
×
[(
λX − c0X

pλp+1

kT (p + 1)
+ · · ·

)(
λX − c1X

qλq+1

kT (q + 1)
+ · · ·

)]−1

. (6)

The leading term in the denominator will beX2λ2 (independent of the value of the
exponentsp, q) while the leading term of the numerator will be of the order ofλp+1

(since the leadingλX terms of each product in the numerator cancel). Therefore, there
will be a finite limit of1A01(λ) asλ→ 0. Furthermore, it is also clear from equation (6)
that the limit remain finite whenc0 = 0, i.e., when one of the systems is the ideal gas.

2.2. The scaled constraint method inN dimensions

For systems with multiple (n) degrees of freedom, generalization of equation (1)
introduces the coupling parameterλ as a common scale factor of the limits of integration:

A(λ) = −kT ln
∫ λX1

λX′1
· · ·
∫ λXn

λX′n
exp

[−e(x)/kT ] dx dλ (7)

thus1A can be obtained as

1A =
∫ 1

0

Iλ∫ λX1
λX′1
· · · ∫ λXn

λX′n
exp[−e(x)/kT ]dx

dλ, (8)
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where

Iλ = ∂

∂λ

∫ λX1

λX′1
· · ·
∫ λXn

λX′n
exp

[−e(x)/kT ] dx. (9)

Applying the standard limit procedure to evaluateIλ we obtain

Iλ= lim
1λ→0

1

1λ

(∫ (λ+1λ)X1

(λ+1λ)X′1
· · ·
∫ (λ+1λ)Xn

(λ+1λ)X′n
exp

[−e(x)/kT ] dx

−
∫ λX1

λX′1
· · ·
∫ λXn

λX′n
exp

[−e(x)/kT ] dx

)
. (10)

Breaking up each integral to integrals over the intervals[(λ + 1λ)X′, λX′], [λX′, λX]
and[λX, (λ + 1λ)X] the first term in the numerator will break up into 3n terms. The
(only) integral without any1λ in its upper limit will be canceled by the original second
term in the numerator. Assuminge to be continuous, use of the mean value theorem
allows the approximation of all of the remaining terms in such a form that each term
will have a factor(1λ)k, 1 6 k 6 n, multiplying finite integrals. Since each such
1λ factor comes from an integration over one of the intervals[(λ + 1λ)X′, λX′] or
[λX, (λ + 1λ)X], any integral that has more than two variables integrated over this
interval will be zero in the limit since the denominator contains1λ raised to the first
power only. Thus the derivative with respect toλ will be

Iλ=X′1
∫ λX2

λX′2
· · ·
∫ λXn

λX′n
exp

[−e(X′1, x2, . . . , xn
)
/kT

]
dx2 . . .dxn

+X1

∫ λX2

λX′2
· · ·
∫ λXn

λX′n
exp

[−e(X1, x2, . . . , xn
)
/kT

]
dx2 . . .dxn

+ · · ·
+X′n

∫ λX2

λX′2
· · ·
∫ λXn

λX′n
exp

[−e(x1, . . . , xn−1, X
′
n

)
/kT

]
dx1 . . . dxn−1

+Xn
∫ λX2

λX′2
· · ·
∫ λXn

λX′n
exp

[−e(x1, . . . , xn−1, Xn
)
/kT

]
dx1 . . . dxn−1 (11)

leading to

1A = kT
∫ 1

0

n∑
i=1

X′i
〈
δ
(
x − λX′i

)〉
λ
+Xi

〈
δ(x − λXi)

〉
λ

dλ. (12)

The quantities〈 〉λ are again just the Boltzmann probabilities of each variable reaching
its lower or upper limits thus we obtain

1A = kT
∫ 1

0

n∑
i=1

X′iP
(
λX′i

)+XiP (λXi)dλ. (13)
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A meaningful application of hard limits to delineate the region of a conformation re-
quires the use of internal coordinates. Thus, we first have to generalize the method
to non-Cartesian systems. Transformation to the internal coordinatesR introduces the
JacobianJ (r):

A(λ) = −kT ln
∫ λR1

λR′1
· · ·
∫ λRn

λR′n
exp

[−e(r)/kT ]J (r)dr dλ (14)

with

J (r) = det


∂x1

∂r1
. . .

∂x1

∂rn
...

...
∂xn

∂r1
. . .

∂xn

∂rn

 . (15)

The arguments leading from equation (7) to equation (11) apply equally to equation (14).
Furthermore, sinceJ (r)dr is the volume element associated with dr , the transition to
probabilities works equally well:

1A = kT
∫ 1

0

m∑
i=1

R′iP
(
λR′i

)+ RiP (λRi). (16)

The replacement of the summation’s upper limitn with m indicates the fact that when
transforming to internal coordinates 6 degrees of freedom can be integrated out (assum-
ing that no external field is present). Their contributions to1A cancels when forming
1A01 thus they were omitted from equation (16) as well. Finally, note that while1A of
equation (16) is a divergent integral,

1A01 = kT
∫ 1

0

m∑
i=1

R′i
[
P1
(
λR′i

)− P0
(
λR′i

)]+ Ri[P1(λRi)− P0(λRi)
]

(17)

is not (according to the argument represented by equations (4)–(6)).

2.3. Numerical considerations

The actual application of equation (16) for the calculation of1A01 requires a nu-
merical integration where at each quadrature point the integrand atλ has to be estimated
from computer simulations. The simulations are to be performed with the hard limits
on the degrees of freedoms that are being sampled. The actual limiting values are de-
termined by the value of the integration variableλ (as seen, e.g., in equation (7)). Each
simulation will have to estimate the probability density of for each degree of freedomat
the limiting value defined byλ.

There are several questions that emerge when equation (16) is to be used for the
calculation of1A01: (i) the most efficient way of evaluating the integrand; (ii) the choice
of R; (iii) the most efficient quadrature.
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2.3.1. The evaluation of the integrand
Equation (16) appears ‘benign’ computationally since it requires only the Boltz-

mann probabilities of each internal degrees of freedom at their limiting values, averaged
over the remaining degrees of freedom. The averaging over all other degrees of freedom
means that the increase the number of variables will only proportionally increase the
computational expenses.

The evaluation of the integrand requires the Boltzmann probability that the variable
r is at the limitλR. Such probabilities are usually estimated using statistics over finite
intervals (grids). There are conflicting requirements for the size of these grids. First,
larger grids (i.e., wider intervals) provide the better statistics. Large gridsize is the source
of two possible errors, both related to the nonlinearity ofP(r). First, the larger the grid
size, the farther one has to extrapolate from the center of the grid to the endpoint of the
grid. Second, the nonlinearity ofP(r) implies that the average ofP(r) over the grid
differs from the value ofP(r) at the midpoint.

Estimation ofP(R) as defined by equation (3) involves gathering statistics of the
frequency of sampling of each gridi (representing the interval[ri, ri +1], with r1 = R)
yieldingPi :

Pi =
∫ ri+1

ri

P (r)dr/1. (18)

For1 small enough the approximation

Pi = P(ri +1/2) (19)

is reasonable.
To obtainP(R) an extrapolation procedure is required. This requires that first we

fit a function to the data gathered. The following fitting procedures were tested (the
formulae used are described in the appendix).

1. Fit a polynomial of ordero to Pi .

2. Fit a quadratic toP1, P2, P3.

3. Fit an exponential of the forma exp(−br) P1, P2.

4. Fit the integral of a quadratic toP1, P2, P3.

5. Fit the integral of a polynomial of ordero to Pi.

Each fitting was followed by an extrapolation of the fitted function toR. The first
two procedures used the approximation of equation (19). The fitting of the exponential
turns out to give identical result irrespective of using equation (19).

2.3.2. The choice of hard limitsR
For the degrees of freedoms that represent vibrations around a single point gov-

erned by a harmonic potential (i.e., bond lengths and bond angles) the choice of the hard
limit R is a matter of computational convenience. Any valueR larger than the largest
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value sampledRmax should provide the correct answer. The only computational consid-
eration is the observation that the moreR exceedsRmax, the more the integration will
sampleλ regions that contribute little to the integral and as a result it is likely that more
quadrature points will be needed to achieve a given level of accuracy.

The choice of the hard limit for torsions is a more complex issue. Since in gen-
eral the full range of a torsion angle is accessible energetically, one obvious choice for
suchR, R′ is±180◦. However, the torsional potentials generally have multiple minima
and the barrier between them makes crossing infrequent and thus thorough sampling
very difficult. For continuum models, the mixed MC–MD algorithm [9] provides an ef-
ficient way for barrier crossing thus for the gradual exploration of the torsional space (as
provided by the increase of theλ parameter).

An other aspect of the torsional degree of freedom is that in general different con-
formations of a molecule are specified by the local minima of certain torsion angles (e.g.,
conformations labeledtrans, gauche,etc.). Free energy simulations aimed at determin-
ing conformational free energy differences usually rely on these torsion angles staying
in the region of their local minima or driven from one to an other. The scaled constraint
method has the advantage of providing a natural way to control the preservation of the
conformation ‘type’ by setting the hard limits at the top of the barriers surrounding the
minimum.

2.3.3. The choice of quadrature
Earlier work has shown that Gaussian quadratures work well for thermodynamic

integrations. It is proposed that the integral using equation (8) be evaluated with such
quadrature. The number of quadrature points that are necessary for a given precision
should be established by trial and error. Note that, beside the obvious reduction in com-
puting expenses, there is an additional incentive to reduce the number of quadrature
points: the fewer points are used, the larger the initialλ value will be, thus the less
severe the problem of calculating small difference between large numbers will be.

2.3.4. Optimizing the runlength at each quadrature point
The magnitude of the TI integrand can vary over two orders of magnitude. This

means that to obtain a given level of precision, different relative errors are permissible at
the various quadrature points. In a general case the run length at each quadrature point
can be based on initial estimates using a certain minimum length. In our case, however,
the variation of the integrand at quadrature pointsrq is well represented bypq ∝ r−1

q .
It has been shown [7] that if the error at quadrature pointq is proportional topq then
the optimal length of the run is proportional to

√
cq pq (wherecq is the corresponding

quadrature coefficient) giving the optimal number of simulation steps as

Nq ∝ √cq/rq. (20)

2.3.5. Choice of the simulation methodology
The introduction of the hard limits into the formalism makes Monte Carlo a natural

choice since such limits are very easy to implement into the Metropolis procedure. The
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test described below on the harmonic oscillator have all used the standard Metropolis
algorithm.

Monte Carlo methods, however, have been found so far to scale rather poorly
and despite of serious efforts and significant progress molecular dynamics remained the
method of choice for modeling intermolecular degrees of freedom of macromolecules.
Thus, unless the calculations are restricted to systems that can be simulated efficiently
with Monte Carlo methods, the molecular dynamics method has to be generalized to
incorporate hard limits on internal coordinates.

3. Numerical examples

3.1. Description of the system

Tests were run in this study on the harmonic oscillator where

e(r) = cr2 (21)

leading to

1A01=−kT
[
ln
∫ R

−R
exp

(−c1r
2/kT

)
dr − ln

∫ R

−R
exp

(−c0r
2/kT

)
dr

]
=−kT

[
ln 2

∫ R

0
exp

(−c1r
2/kT

)
dr − ln 2

∫ R

0
exp

(−c0r
2/kT

)
dr

]
=−kT

[
ln

erfu
(
R
√
c1/kT

)
√
c1/kT

− ln
erfu

(
R
√
c0/kT

)
√
c0/kT

]
, (22)

where erfu is the unnormalized error function:

erfu(r) =
∫ r

0
exp

(−u2
)

du. (23)

When the reference system is the ideal gas (i.e.,c0 = 0) instead of equation (22) we
have

1A01 = −kT
[
ln
∫ R

−R
exp

(−c1r
2/kT

)
dr − ln(2R)

]
. (24)

The TI integral (equation (2)) will become

1A01 = −2kT
∫ 1

0

−R exp[−c(Rλ)2/kT ]
erfu(R

√
c/kT )/

√
c/kT

dλ. (25)

Having an analytical expression for both the integrand and the integral will allow us to
test the errors in approximating the integrand and the quadrature error separately.
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Table 1
Quadrature errors.

Method R Nq = 3 Nq = 5 Nq = 8

Trapezoid 2 0.0580 0.0191 0.0073
Simpson 2 0.0395 0.0122 0.0022
Gaussian 2 0.0426 0.0003 0.0000

Trapezoid 3 0.1931 0.0434 0.0163
Simpson 3 0.1566 0.0381 0.0056
Gaussian 3 0.0177 0.0098 0.0003

Trapezoid 4 0.3197 0.0992 0.0295
Simpson 4 0.4441 0.0090 0.0260
Gaussian 4 0.1812 0.0212 0.0021

Legend:R is the limit used in equation (22);Nq is the number of quadrature points used.

3.2. Comparison of quadratures and hard limit choices

Comparisons were made using the trapezoid rule, the Simpson integration and the
Gaussian quadrature of orders 3, 5 and 8. These comparisons used the exact expression
for the integrand, equation (25).

The calculations were performed forc0 = 1, c1 = 5 andR = 2,3 and 4. The refer-
ence values computed using equation (25) are 0.8000, 0.8047 and 0.80047, respectively.
Table 1 shows the quadrature errors using 3, 5 and 8 quadrature points. It is clear that
the Gaussian quadrature is the best and the trapezoid rule produces the largest quadrature
error. It can also be seen that the extension of the limitR to regions that are sampled
with negligible frequency or not at all increases significantly the quadrature error with a
given number of quadrature points, irrespective of the integration method used.

Table 1 also suggests that even a 3-point Gaussian quadrature could be used if a
few percent error in the calculated1A01 is acceptable.

The calculated free energy seems to be relatively insensitive to the value of the of
the hard limit, as long as the Boltzmann probability at the hard limit is small. In this
example,P(X) was 0.022, 0.000 and 0.000 forR = 2,3 and 4, respectively. This shows
that setting the hard limit at the 2% probability level results only in about half percent
error in the free energy – comparable to the precision of the Monte Carlo procedure
described here.

3.3. Comparison of extrapolation procedures

All five fitting procedures described in section 2.3.1 have been tested on the har-
monic oscillator. The tests compared the exact values of the integrand at the five quadra-
ture points with the values extrapolated with the different procedures. For these tests,
c0 = 0 was chosen to avoid possible compensating errors from the two extrapolations
that would have been needed otherwise. In this case, the ratioR/

√
c1 already character-

izes the system soc0 was kept fixed at 2.0 and onlyR was varied.
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Table 2
Comparison of fitting polynomial orders.

R c Ng o 1I (1) 1I (2) 1I (3) 1I (4) 1I (5)

2.00 2.00 8 2 0.001 0.058 0.235 0.355 0.175
2.00 2.00 8 3 0.000 0.007 −0.067 −0.387 0.536
2.00 2.00 10 2 0.001 0.052 0.290 0.303 0.132
2.00 2.00 10 3 0.000 0.005 −0.055 −0.309 −0.432
2.00 2.00 10 4 0.001 −0.002 −0.028 0.050 0.249
2.00 2.00 12 2 0.000 0.049 0.270 0.271 0.102
2.00 2.00 12 3 0.000 0.005 −0.049 −0.271 −0.377
2.00 2.00 12 4 0.001 −0.001 −0.022 0.036 0.185
2.00 2.00 12 5 −0.011 −0.001 0.009 0.055 0.025
2.00 2.00 20 2 0.000 0.044 0.235 0.212 0.043
2.00 2.00 20 3 0.000 0.004 −0.041 −0.216 −0.293
2.00 2.00 20 4 −0.001 −0.001 −0.014 0.025 0.123
2.00 2.00 20 5 −0.010 −0.001 0.006 0.035 0.023
2.00 2.00 20 6 2.427 0.051 −0.571 1.004 3.686
2.00 2.00 20 7 0.040 0.002 0.000 0.034 0.119
2.00 2.00 20 8 0.009 −0.002 0.003 0.004 0.003
2.00 2.00 20 9 −0.046 −0.013 0.027 0.060 0.227

1.50 2.00 8 2 0.000 0.019 0.144 0.284 0.289
1.50 2.00 8 3 0.000 0.003 −0.002 −0.107 0.239
1.50 2.00 10 2 0.000 0.018 0.130 0.252 0.250
1.50 2.00 10 3 0.000 0.002 −0.002 −0.086 −0.191
1.50 2.00 10 4 0.001 0.000 −0.010 −0.022 0.009
1.50 2.00 12 2 0.000 0.017 0.122 0.232 0.226
1.50 2.00 12 3 0.000 0.002 0.002 0.076 −0.168
1.50 2.00 12 4 0.001 0.000 −0.007 −0.018 0.006
1.50 2.00 12 5 −0.008 −0.006 0.002 0.013 0.037
1.50 2.00 20 2 0.000 0.015 0.108 0.199 0.184
1.50 2.00 20 3 0.000 0.002 −0.002 −0.063 −0.135
1.50 2.00 20 4 0.000 0.000 −0.005 −0.011 0.005
1.50 2.00 20 5 0.006 0.000 0.000 0.010 0.022
1.50 2.00 20 6 −3.126 0.130 −0.119 −0.247 0.585
1.50 2.00 20 7 0.043 −0.013 0.002 −0.007 −0.006
1.50 2.00 20 8 0.027 −0.005 0.001 −0.001 −0.001
1.50 2.00 20 9 0.448 −0.052 0.007 −0.026 −0.018

Legend:R is the limit used in equation (22);c is the potential coefficient of equation (21);Ng is the number
of grid points used in collecting the sampling frequencies;o is the order of the fitting polynomial;1I(q) is
the error of the integrand at the quadrature pointq.

The first comparison was aimed at testing the effect of the ordero on the polyno-
mial approximations. Table 2 shows the results of the tests using the polynomial integral
fits (similar results were obtained using the pointwise fit, except that the anomalously
large errors seen witho = 6 were not seen there). For the last two quadrature points
the fits show large variations with the order and increasingo quite often brings in larger
errors. The fits for the first three quadrature points, on the other hand, show the expected
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Table 3
Comparison of fitting procedures.

R c Ng q Ix 1I(p2) 1I (p2
av) 1I (e) 1I (p) 1I (p2

av)

2.00 2.00 8 1 −21.068 0.000 0.003 −0.020 0.003 0.000
2.00 2.00 10 1 −21.068 0.000 0.002 −0.012 0.000 0.001
2.00 2.00 12 1 −21.068 0.000 0.001 −0.008 0.000 0.001
2.00 2.00 20 1 −21.068 0.000 0.000 −0.002 0.000 −0.001
2.00 2.00 8 2 −3.237 0.037 0.038 −0.079 0.010 0.007
2.00 2.00 10 2 −3.237 0.018 0.019 −0.047 −0.002 −0.002
2.00 2.00 12 2 −3.237 0.010 0.011 −0.032 −0.001 −0.001
2.00 2.00 20 2 −3.237 0.002 0.002 −0.010 −0.001 −0.001
2.00 2.00 8 3 −0.453 0.120 0.101 −0.064 −0.115 −0.067
2.00 2.00 10 3 −0.453 0.035 0.025 −0.037 −0.048 −0.028
2.00 2.00 12 3 −0.453 0.012 0.005 −0.024 −0.048 −0.028
2.00 2.00 20 3 −0.453 0.000 −0.003 −0.007 −0.018 −0.014
2.00 2.00 8 4 −0.028 −0.120 −0.094 −0.013 −0.503 −0.387
2.00 2.00 10 4 −0.028 −0.097 −0.093 −0.007 0.074 0.050
2.00 2.00 12 4 −0.028 −0.058 −0.059 −0.004 0.052 0.036
2.00 2.00 20 4 −0.028 −0.010 −0.011 −0.001 0.140 0.123
2.00 2.00 8 5 −0.002 −0.316 −0.268 −0.002 −0.660 −0.536
2.00 2.00 10 5 −0.002 −0.144 −0.140 −0.001 0.347 0.249
2.00 2.00 12 5 −0.002 −0.065 −0.066 −0.001 0.248 0.185
2.00 2.00 20 5 −0.002 −0.007 −0.007 −0.000 0.140 0.123

Legend: R is the limit used in equation (22);c is the potential coefficient of equation (21);Ng is the
number of grid points used in collecting the sampling frequencies;q is quadrature point index;Ix is the
exact integrand at the quadrature pointq; 1I(p2), 1I(p2

av), 1I(e), 1I(p), 1I(pav) are the errors of
the integrand at the quadrature pointq using the quadratic fit, integral of quadratic fit, exponential fit,
polynomial fit, and integral of polynomial fit, respectively.

improvements with increased orders untilo reaches 4 or 5. From this it is concluded that
theo value to be used should not exceed this range – we choseo = 4 as the highest order
recommended and that value was used in the subsequent tests.

Table 3 shows the comparison of the recommended polynomial fits with the other
fitting procedures. In principle, a fitting involving integrals should be better than its
counterpart using the approximation of equation (2) since it involves one less approxi-
mation. The data in Table 3 does indeed conform to this expectation, thus the quadratic
and polynomial fittings using the approximation of equation (19) can be safely elimi-
nated from further considerations.

The relative performance of the quadratic, exponential and polynomial fitting pro-
cedures depended on the magnitude of the integrand. For small magnitude of the in-
tegrand (largerλ values,q = 4 or 5) the exponential fitting consistently outperformed
the polynomial-based procedures. For the larger magnitudes (smallerλ values,q = 1
or 2), the polynomial fittings outperformed both the quadratic and the exponential fits.
In the middle range(q = 3) the exponential and quadratic fits are competitive with each
other.
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Table 4
Comparison of runlength strategies.

Strategy Ng 1(p2) SD(p2) 1(e) SD(e) 1(cmb) SD(cmb)

even 8 −0.011 0.042 −0.044 0.042 −0.035 0.035
opt 8 −0.016 0.021 −0.057 0.017 −0.029 0.028

even 10 0.012 0.066 −0.008 0.057 0.021 0.060
opt 10 −0.039 0.018 −0.045 0.015 −0.042 0.020

even 12 0.023 0.037 0.006 0.016 0.013 0.016
opt 12 −0.010 0.025 −0.015 0.020 −0.009 0.025

even 20 −0.026 0.050 −0.018 0.029 −0.007 0.031
opt 20 −0.001 0.039 −0.013 0.028 −0.010 0.023

Legend:Ng is the number of gridpoints used;1(p2) andSD(p2) are the error and standard deviation of the
integrated quadratic fit;1(e) andSD(e) are the error and standard deviation of the exponential fit;1(cmb)
andSD(cmb) are the error and standard deviation of the combined polynomial and exponential fit; the exact
value is 1.1606.

3.4. Comparison of runlength strategies

To quantify the savings by using different runlengths at the various quadrature
points, calculations were run using constant runlengths and the optimal choice according
to equation (20). Each choice was scaled so that the total number of MC steps were
always the same. Ten runs using a total of 5·105 MC steps were performed for using the
two runlength strategies and the root mean square deviations were calculated for each
method. Table 4 gives the result of these comparison forR = 2, c0 = 0 andc1 = 2.
It can be seen that the use of the optimal MC steps has resulted in a decrease of the
statistical error by about 50% – without any additional computational investment.

3.5. Selection of the gridsize

Both the calculation using the exact grid averages and the Monte Carlo calcula-
tions produced more accurate results as the number of grids was increased from 8 to 12.
Further increase to 20 brought generally little if any improvement. As a result, it is
suggested that 12 gridpoints would be the best choice.

4. Conclusions

A new formalism has been proposed for calculating the free energy contribution
of molecular flexibility, based on gradually releasing constraints on internal coordinates.
The method is also well suited for the calculation of the contribution of selected degrees
of freedom to the solvation excess free energy and allows for precise control over the
range of configurations that are allowed for a given conformation.

Numerical test on a harmonic oscillator showed that runs using O(106) Monte Carlo
steps can achieve about 2% accuracy using a 5-point Gaussian quadrature, collecting the
data on a 12-point grid and applying an extrapolation procedure using either a polyno-
mial or an exponential fit, depending on the coupling parameter’s value.
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As it is true with any new technique, significant further developments are necessary
for its efficient application to larger systems. Incorporation of molecular dynamics with
the hard limits on internal coordinates as required by this new method will be of prime
importance.
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Appendix A. Fitting formulae

The formulae below (except for the exponential fit) have been derived assuming a
grid size of unity and extrapolating to zero – this can always be achieved by the appro-
priate choice of units.

A.1. Quadratic fit

P(r) = ar2 + br + c
can be least-square fitted to the points(0.5, y1), (1.5, y2); (2.5, y3) with the expressions

a = 2(y1 − y2)− (y1 − y3)

2
, b = y2 − y1− 2a, c = y1− b2 −

a

4
.

A.2. Quadratic integral fit

∫ R+(k+1)1

R+k1
P (r) = (ar2 + br + c)dr (k = 1,2,3)

can be least-square fitted to the pointsy1, y2, y3, assumed to be the integrals ofP(r)
over the intervals[0,1], [1,2], and[1,3], respectively, with the expressions

a = y1+ y3 − 2.0y1

2.0
, b = 3.0y2 − 2.0y1 − y3

and

c = 11.0y1 − 7.0y2 + 2.0y3

6.0
.

A.3. Exponential fit

P(r) = a exp(−br)
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can be least-square fitted to the points(R − 0.51, y1), (R − 1.51, y2) with the expres-
sions

b = 1

1
log

(
y2

y1

)
, a = y2b1

exp(−bR)(e2− e)
with e = exp(b1). Interestingly, the same formulae are obtained ify1 andy2 are as-
sumed to be the integral ofP(r) over the two corresponding grid points.

A.4. Polynomial fit

The polynomial of ordern

P (r) =
ng∑
i=0

air
i−1

can be fitted to theng data points(i − 0.5, yi ) (i = 1, . . . , ng) if the coefficientsai are
the solution of a system of linear equations with coefficient matrix

Ap,q =
ng∑
i=1

(i − 0.5)p(i − 0.5)q , 06 p, q 6 ng

and right-hand side

bp =
ng∑
i=1

yi(i − 0.5)p, 06 p 6 ng.

A.5. Polynomial integral fit

Analogously to the quadratic integral fit, the data pointsyi can be considered the
integrals of the polynomialP(r) over the intervals[i − 1, i]. In this case the optimal
coefficientsai are the solution of a system of linear equations with coefficient matrix

Ap,q =
ng∑
i=1

[ip+1− (i − 1)p+1][iq+1 − (i − 1)q+1]
(p + 1)(q + 1)

, 06 p, q 6 ng

and right-hand side

bp =
ng∑
i=1

yi[ip+1− (i − 1)p+1]
p + 1

, 06 p 6 ng.
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